Part Number Hot Search : 
HOA086 STA559BW MBRF3010 RCMX1 PSL01 HMC1021 1F006 N25F80
Product Description
Full Text Search
 

To Download TDA4863-2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 D a t a S h e e t, V 1. 2 , F e b r ua r y 20 0 4
Boost Controller
TDA4863-2 Power Factor Controller IC for High Power Factor and Low THD
http://www.infineon.com/pfc
Power Management & Supply
Never
stop
thinking.
TDA4863-2 Revision History: Previous Version: Page Subjects (major changes since last revision) Change footnote in Section 3.2 Electrical Characteristics: February 2004 Change layout: February 2004 For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com. 2004-02 V1.2
Edition 2004-02 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 Munchen, Germany
(c) Infineon Technologies AG 2002.
All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
TDA4863-2
1 1.1 1.2 1.3 1.4 1.5 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 3 3.1 3.2 3.3 4 4.1 5
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Improvements Compared to TDA 4862 and TDA4863 . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 4 4 5 6 8
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 IC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Voltage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Overvoltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Current Sense Comparator, LEB and RS Flip-Flop . . . . . . . . . . . . . . . . . . 10 Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Restart Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gate Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Signal Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 17
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Results of THD Measurements with Application Board Pout = 110 W . . . . 22 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Data Sheet
3
V1.2, 2004-02
Power Factor Controller IC for High Power Factor and Low THD Final Data
TDA4863-2
Boost Controller
1
Overview
1.1 Features
* IC for sinusoidal line-current consumption * Power factor achieves nearly 1 * Controls boost converter as active harmonic filter for low THD * Start up with low current consumption * Zero current detector for discontinuous operation mode * Output overvoltage protection * Output undervoltage lockout * Internal start up timer * Totem pole output with active shut down * Internal leading edge blanking LEB
P-DIP-8-4
P-DSO-8-3
1.2 Improvements Compared to TDA 4862 and TDA4863
* * * * * * Suitable for universal input applications with low THD at low load conditions Very low start up current Accurate OVR and VISENSEmax threshold Competition compatible VCC thresholds Enable threshold referred to VVSENSE Compared to TDA4863 a bigger MOS Transistor can be driven (see 2.10)
Type TDA4863-2 TDA4863-2G
Ordering Code Q67040-S4620 Q67040-S4621
Package P-DIP-8-4 P-DSO-8-3
Data Sheet
4
V1.2, 2004-02
TDA4863-2
Overview
AC line
RF-Filter and Rectifier
DC Output Volage
TDA4863-2
GND
Figure 1
Typical application
1.3
Description
The TDA4863-2 IC controls a boost converter in a way that sinusoidal current is taken from the single phase line supply and stabilized DC voltage is available at the output. This active harmonic filter limits the harmonic currents resulting from the capacitor pulsed charge currents during rectification. The power factor which describes the ratio between active and apparent power is almost one. Line voltage fluctuations can be compensated very efficiently.
Data Sheet
5
V1.2, 2004-02
TDA4863-2
Overview
1.4
Pin Configuration
1 VSENSE 2 VAOUT 3 MULTIN 4 ISENSE
8 VCC 7 GTDRV 6 GND 5 DETIN
Figure 2
Pin Configuration of TDA4863-2
Data Sheet
6
V1.2, 2004-02
TDA4863-2
Overview Pin Definitions and Functions Pin 1 Symbol Description VSENSE Voltage Amplifier Inverting Input VSENSE is connected via a resistive divider to the boost converter output. With a capacitor connected to VAOUT the internal error amplifier acts as an integrator. VAOUT Voltage Amplifier Output VVAOUT is connected internally to the first multiplier input. To prevent overshoot the input voltage is clamped internally at 5 V. If VVAOUT is less than 2.2 V the gate driver is inhibited. If the current flowing into this pin exceeds an internal threshold the multiplier output voltage is reduced to prevent the MOSFET from overvoltage damage. Multiplier Input MULTIN is the second multiplier input and is connected via a resistive divider to the rectifier output voltage. Current Sense Input ISENSE is connected to a sense resistor controlling the MOSFET source current. The input is internally clamped at -0.3 V to prevent negative input voltage interaction. A leading edge blanking circuitry suppresses voltage spikes when turning the MOSFET on. Zero Current Detector Input DETIN is connected to an auxiliary winding and monitors the zero crossing of the inductor current. Ground Gate Driver Output GTDRV is the output of a totem-pole circuitry for direct driving a MOSFET. Compared with TDA4863 the TDA4863-2 can drive 20A MOSFETS. To achieve this the gate output voltage VGTLat IGT=0A has been set to 0.85 V. An active shutdown circuitry ensures that GTDRV is set to low if the IC is switched off. Positive Voltage Supply If VCC exceeds the turn-on threshold the IC is switched on. When VCC falls below the turn-off threshold the IC is switched off. In switch off mode power consumption is very low. Two capacitors should be connected to VCC. An electrolytic capacitor and 100 nF ceramic capacitor which is used to absorb fast supply current spikes. Make sure that the electrolytic capacitor is discharged before the IC is plugged into the application board.
2
3
MULTIN
4
ISENSE
5
DETIN
6 7
GND GTDRV
8
VCC
Data Sheet
7
V1.2, 2004-02
TDA4863-2
Overview
1.5
Block Diagram
VCC
GND 5V
+
DETIN
tres=150us
-
20V UVLO
10V 12.5V -
Reference Voltage Vref
Clamp Current
0.5V +
Restart Timer
+ -
0.2V
Detector
1.0V 1.5V -
RS Flip-Flop
Gate Drive
GTDRV
Enable
+
2.2V
-
Inhibit
+
Inhibit time delay
tdVA=2us
-
2.5V
+
LEB
tdsd=70ns
1V +
Voltage Amp
-
Multiplier
multout
1V OVR
+ +
Current Comp
-
uvlo active shut down
3.5V
-
5.4V
5p 40k
Vref
+
VSENSE
VAOUT
MULTIN
ISENSE
Figure 3
Internal Bolck Diagram
Data Sheet
8
V1.2, 2004-02
TDA4863-2
Functional Description
2
2.1
Functional Description
Introduction
Conventional electronic ballasts and switch mode power supplies are designed with a bridge rectifier and a bulk capacitor. Their disadvantage is that the circuit draws power from the line when the instantaneous AC voltage exceeds the capacitors voltage. This occurs near the line voltage peak and causes a high charge current spike with following characteristics: The apparent power is higher than the real power that means low power factor condition, the current spikes are non sinusoidal with a high content of harmonics causing line noise, the rectified voltage depends on load condition and requires a large bulk capacitor, special efforts in noise suppression are necessary. With the TDA4863-2 preconverter a sinusoidal current is achieved which varies in direct instantaneous proportional to the input voltage half sine wave and so provides a power factor near 1. This is due to the appearance of almost any complex load like a resistive one at the AC line. The harmonic distortions are reduced and comply with the IEC555 standard requirements.
2.2
IC Description
The TDA4863-2 contains a wide bandwidth voltage amplifier used in a feedback loop, an overvoltage regulator, an one quadrant multiplier with a wide linear operating range, a current sense comparator, a zero current detector, a PWM and logic circuitry, a totempole MOSFET driver, an internal trimmed voltage reference, a restart timer and an undervoltage lockout circuitry.
2.3
Voltage Amplifier
With an external capacitor between the pins VSENSE and VAOUT the voltage amplifier acts like an integrator. The integrator monitors the average output voltage over several line cycles. Typically the integrators bandwidth is set below 20 Hz in order to suppress the 100 Hz ripple of the rectified line voltage. The voltage amplifier is internally compensated and has a gain bandwidth of 5 MHz (typ.) and a phase margin of 80 degrees. The non-inverting input is biased internally to 2.5 V. The output is directly connected to the multiplier input. The gate drive is disabled when VSENSE voltage is less than 0.2 V or VAOUT voltage is less than 2.2 V. If the MOSFET is placed nearby the controller switching interferences have to be taken into account. The output of the voltage amplifier is designed in a way to minimize these inteferences.
Data Sheet
9
V1.2, 2004-02
TDA4863-2
Functional Description
2.4
Overvoltage Regulator
Because of the integrators low bandwidth fast changes of the output voltage can't be regulated within an adequate time. Fast output changes occur during initial start-up, sudden load removal, or output arcing. While the integrators differential input voltage remains zero during this fast changes a peak current is flowing through the external capacitor into pin VAOUT. If this current exceeds an internal defined margin the overvoltage regulator circuitry reduces the multiplier output voltage. As a result the on time of the MOSFET is reduced.
2.5
Multiplier
The one quadrant multiplier regulates the gate driver with respect of the DC output voltage and the AC half wave rectified input voltage. Both inputs are designed to achieve good linearity over a wide dynamic range to represent an AC line free from distortion. Special efforts have been made to assure universal line applications with respect to a 90 to 270 V AC range. The multiplier output is internally clamped to1.3 V. So the MOSFET is protected against critical operating during start up.
2.6
Current Sense Comparator, LEB and RS Flip-Flop
The source current of the MOS transistor is transferred into a sense voltage via the external sense resistor. The multiplier output voltage is compared with this sense voltage. Switch on time of the MOS transistor is determined by the comparision result To protect the current comparator input from negative pulses a current source is inserted which sends current out of the ISENSE pin every time when VISENSE-signal is falling below ground potential. An internal RC-filter is connected at the ISENSE pin which smoothes the switch-on current spike.The remaining switch-on current spike is blanked out via a leading edge blanking circuit with a blanking time of typ. 200 ns. The RS Flip-Flop ensures that only one single switch-on and switch-off pulse appears at the gate drive output during a given cycle (double pulse suppression).
2.7
Zero Current Detector
The zero current detector senses the inductor current via an auxiliary winding and ensures that the next on-time of the MOSFET is initiated immediately when the inductor current has reached zero. This reduces the reverse recovery losses of the boost converter diode to a minimum. The MOSFET is switched off when the voltage drop of the shunt resistor exceeds the voltage level of the multiplier output. So the boost current waveform has a triangular shape and there are no deadtime gaps between the cycles. This leads to a continuous AC line current limiting the peak current to twice of the average current.
Data Sheet 10 V1.2, 2004-02
TDA4863-2
Functional Description To prevent false tripping the zero current detector is designed as a Schmitt-Trigger with a hysteresis of 0.5 V. An internal 5 V clamp protects the input from overvoltage breakdown, a 0.6 V clamp prevents substrate injection. An external resistor has to be used in series with the auxiliary winding to limit the current through the clamps.
2.8
Restart Timer
The restart timer function eliminates the need of an oscillator. The timer starts or restarts the TDA4863-2 when the driver output has been off for more than 150 s after the inductor current reaches zero.
2.9
Undervoltage Lockout
An undervoltage lockout circuitry switches the IC on when VCC reaches the upper threshold VCCH and switches the IC off when VCC is falling below the lower threshold VCCL. During start up the supply current is less then 100 A. An internal voltage clamp has been added to protect the IC from VCC overvoltage condition. When using this clamp special care must be taken on power dissipation. Start up current is provided by an external start up resistor which is connected from the AC line to the input supply voltage VCC and a storage capacitor which is connected from VCC to ground. Be aware that this capacitor is discharged before the IC is plugged into the application board. Otherwise the IC can be destroyed due to the high capacitor voltage. Bootstrap power supply is created with the previous mentioned auxiliary winding and a diode (see "Application Circuit" on Page 21).
2.10
Gate Drive
The TDA4863-2 totem pole output stage is MOSFET compatible. An internal protection ciruitry is activated when VCC is within the start up phase and ensures that the MOSFET is turned off. The totem pole output has been optimized to achieve minimized cross conduction current during high speed operation. Compared to TDA4863 a bigger MOS Transistor can be driven by the TDA4863-2. When a big MOSFET is used in applications with TDA4863, for example SPP20N60C3, the falling edge of the gate drive voltage can swing under GND and can cause false triggering of the IC. To prevent false triggering the gate drive voltage of theTDA 4863-2 at low state and gate current IGT= 0mA is set to VGTL= 0.85V (TDA4863: VGTL=0.25V). The difference between TDA4863-2 and TDA4863 is also depicted in diagramm: gate drive voltage low state on page 20.
Data Sheet
11
V1.2, 2004-02
TDA4863-2
Functional Description
2.11
Signal Diagrams
IVAOUT
IOVR
DETIN
GTDRV
LEB
VISENSE
multout
Icoil
Figure 4
Typical signals
Data Sheet
12
V1.2, 2004-02
TDA4863-2
Electrical Characteristics
3
3.1
Parameter
Electrical Characteristics
Absolute Maximum Ratings
Symbol ICCH + IZ VCC -0.3 Limit Values min. max. 20 VZ mA V VZ = Zener Voltage ICC +IZ = 20 mA VVAOUT = 4 V, VVSENSE = 2.8 V VVAOUT = 0 V, VVSENSE = 2.3 V t < 1 ms DETIN > 6 V DETIN < 0.4 V t < 1 ms t < 1 ms V MIL STD 883C method 3015.6, 100 pF,1500 Unit Remarks
Supply + Zener Current Supply Voltage
Voltage at Pin 1,3,4 Current into Pin 2 IVAOUT
-0.3
6.5 40 mA
-10
Current into Pin 5
IDETIN -10
10
Current into Pin 7 ESD Protection
IGTDRV
-500
500 2000
Storage Temperature Operating Junction Temperature Thermal Resistance Junction-Ambient
Tstg TJ RthJA
-50 -40
150 150 100 180
C K/W P-DIP-8-4 P-DSO-8-3
Data Sheet
13
V1.2, 2004-02
TDA4863-2
Electrical Characteristics
3.2
Parameter
Characteristics
Symbol Limit Values min. typ. 20 20 4 12 9.5 12.5 10 2.5 2.45 2.5 2.55 5 100 5 80 -0.3 0.2 2.2 3 -6 0.25 2.3 s mA 0.17 2.1 V mV dB MHz Degr A V VISENSE = -0.38 V VISENSE = -0.38 V VVAOUT = 0 V VVSENSE = 2.3 V, t < 1 ms VVAOUT = 4 V VVSENSE = 2.8 V, t < 1 ms 6.0 1.4 V V VVSENSE = 2.3 V, IVAOUT = -0.2 mA VVSENSE = 2.8 V, IVAOUT = 0.5 mA VCC = 12 V to 16 V max. 22 100 6 13 10. 5 V A mA V ICC + IZ = 20 mA VCC = VCCON -0.5 V Output low Unit Test Condition
Unless otherwise stated, -40C < Tj < 150C, VCC = 14.5 V
Start-Up circuit Zener Voltage Start-up Supply Current Operating Supply Current VCC Turn-ON Threshold VCC Turn-OFF Threshold VCC Hysteresis Voltage Amplifier Voltage feedback Input Threshold Line Regulation Open Loop Voltage Gain1) Unity Gain Bandwidth1) Phase Margin1) Bias Current VSENSE Enable Threshold Inhibit Threshold Voltage Inhibit Time Delay Output Current Source VFB VFBLR GV BW M IBVSENSE -1.0 VVSENSE VVAOUTI tdVA IVAOUTH VZ ICCL ICCH VCCON VCCOFF VCCHY 18
Output Current Sink
IVAOUTL
35
Upper Clamp Voltage Lower Clamp Voltage
1)
VVAOUTH 4.8 VVAOUTL 0.8
5.4 1.1
not subject to production - verified by characterization
Data Sheet
14
V1.2, 2004-02
TDA4863-2
Electrical Characteristics
3.2
Parameter
Characteristics (cont'd)
Symbol Limit Values min. typ. 40 max. 45 A Tj = 25C , VVAOUT = 3.5 V VISENSE = 0 V VVAOUT = 2.7 V VMULTIN = 0 V IOVR = 50 A 300 130 1.6 0.55 1 5.4 0.7 1 A V A V VDETINHC 4.5 VDETINLC 0.1 IBMULTIN VMULTIN VVAOUT -1 4.9 0.4 -0.2 0 to 4 VFB to VFB + 1.5 0.3 0.7 IDETIN = 5 mA IDETIN = -5 mA VMULTIN = 0 V VVAOUT = 2.75 V VMULTIN = 1 V VDETIN = 2 V V ns Unit Test Condition
Unless otherwise stated, -40C < Tj < 150C, VCC = 14.5 V
Overvoltage Regulator Threshold Current Current Comparator Input Bias Current Input Offset Voltage (Tj = 25 C) Max Threshold Voltage Threshold at OVR Leading Edge Blanking Shut Down Delay Detector Upper Threshold Voltage Lower Threshold Voltage Hysteresis Input Current Input Clamp Voltage High State Low State Multiplier Input bias current Dynamic voltage range MULTIN Dynamic voltage range VAOUT Multiplier Gain VDETINU VDETINL IBDETIN 0.95 -1 VDETINHY 0.25 1.5 1.1 0.4 -0.2 IBISENSE VISENSEO VISENSEM 0.95 VISENOVR tLEB tdISG 100 -1 -0.2 25 1.0 0.05 200 80 1.05 1 A mV V IOVR 35
Klow Khigh
VVAOUT < 3 V, VMULTIN = 1 V VVAOUT > 3.5V, VMULTIN = 1 V
K = deltaVISENSE /deltaVVAOUT at VMULTIN = constant
Data Sheet 15 V1.2, 2004-02
TDA4863-2
Electrical Characteristics
3.2
Parameter
Characteristics (cont'd)
Symbol Limit Values min. typ. 160 0.85 1.0 1.7 2.2 V max. 250 s IGT = 0 mA IGT = 2 mA IGT = 20 mA IGT = 200 mA IGT = -5 mA, see "Gate Drive Voltage High State versus Vcc" on Page 20 1.25 130 130 ns IGT = 20 mA, VCC = 9 V CGT = 4.7 nF VGT = 2...8 V Unit Test Condition
Unless otherwise stated, -40C < Tj < 150C, VCC = 14.5 V
Restart Timer Restart time Gate Drive Gate drive voltage low state VGTL VGTL tRES 100
Gate drive voltage high state VGTH
10.8
Gate drive voltage active shut VGTSD down Rise time Fall time trise tfall
1 80 55
Data Sheet
16
V1.2, 2004-02
TDA4863-2
Electrical Characteristics
3.3
Electrical Diagrams
VCCON/OFF versus Temperature
14
Icc versus Vcc
5 4,5
13 4 3,5 3 2,5 2 1,5 1 8 0,5 0 0 5 10 Vcc/V 15 20 7 -40 0 40 80 120 160 VCC OFF VCC ON 12 VCC ON
Vcc / V
Icc / mA
11
10 VCC OFF 9
Tj / C
Iccl versus Vcc
50 45 40 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16
ICCL versus Temperature, VCC = 10 V
50 45 40 35 30 ICCL / uA 25 20 15 10 5 0 -40 0 40 Tj / C 80 120 160
Iccl / uA
Vcc / V
Data Sheet
17
V1.2, 2004-02
TDA4863-2
Electrical Characteristics VFB versus Temperature (pin1 connected to pin2)
2,55 2,54 2,53 100 2,52 2,51 VFB / V 2,5 60 2,49 2,48 2,47 20 2,46 2,45 -40 0 40 80 120 160 Tj / C 0 0,01 20 0 1000 10000 40 Phi 80 120 180 160 Gv 140 120 100 80 60 40
Open Loop Gain and Phase versus Frequency
GV/dB Phi/deg
0,1
1
10 f/kHz
100
Overvoltage Regulator VISENSE versus Threshold Voltage
1,2 VVAOUT = 3.5V VMULTIN = 3.0V 1
Leading Edge Blanking versus Temperature
300
250
0,8 VISENSE / V
200
LEB / ns
0,6
150
0,4
100
0,2
50
0 35 37 39 41 43 45 Iovp / uA
0 -40
0
40
80
120
160
Tj / C
Data Sheet
18
V1.2, 2004-02
TDA4863-2
Electrical Characteristics Current Sense Threshold VISENSE versus VMULTIN
1 4.5V 0,9 4.0V 0,8 0,7 3.5V 0,8 0,7 1.5 0,9 Vmultin=4.0 3.0 2.0
Current Sense Threshold VISENSE versus VVAOUT
1
VISENSE/ V
VISENSE / V
0,6 0,5 0,4 0,3 0,2 0,1 0 0 1 2 3 4 VAOUT=2.75V 3.0V 3.25V
0,6 0,5 0,4 0,3 0,2 0,1 0 2,5 3 3,5 4 4,5 0.25 1.0
0.5
VMULTIN / V
VVAOUT / V
Restart Time versus Temperature
220
200
180
trst / us
160
140
120
100 -40 0 40 Tj / C 80 120 160
Data Sheet
19
V1.2, 2004-02
TDA4863-2
Electrical Characteristics Gate Drive Rise Time and Fall Time versus Temperature Gate Drive Voltage High State versus Vcc
12
140
11,5 IGT =-2mA IGT =-20mA
120
11
100
rise time / ns
80 60 40 20 0 -40
V GTH / V
rise time
10,5 10 9,5 9 8,5 8
IGT =-200mA
fall time
0
40
80
120
160
11
13 Vcc / V
15
Tj / C
Gate Drive Voltage Low State versus IGT
1,8 1,6 1,4 1,2 V GTL / V 1 0,8 0,6 0,4 0,2 0 0 2 4 6 8 10 IGT / mA dotted line: TDA4863 TDA4863-2
Data Sheet
20
V1.2, 2004-02
TDA4863-2
Application Circuit
4
Application Circuit
Application circuit: Pout=110W, universal Input Vin=90-270V AC
L1=750uH E36/11,N27; gap=2mm W1=85 turns,d=40x0.1 W2=17 turns, d=0.3 D5 MR856 Vout 410V DC D7 C13 3.3n 400V
RF filter Vin and 90-270V AC rectifier
R12 470
D6
R8A 120k
R8B 120k
R9 33k
R10 12
CoolMOS SPP04N60C3 0.95 Ohm C8 47uF 450V R4A 422k
R6A 470k R6B 470k
C10 47uF 25V
8 C9 220n 1
7
6
5
TDA4863-2 2 C1 1u R7 9.1k C2 1u 3 4
R4B 422k
R7 9.1k
C4 10n
R11 0.5
R5 5k1 GND
Figure 5
Pout = 110 W, Universal Input Vin = 90 - 270 V AC
Data Sheet
21
V1.2, 2004-02
TDA4863-2
Application Circuit
4.1
Results of THD Measurements with Application Board Pout = 110 W
(Measurements according to IEC61000-3-2. 150% limit (red line): Momentary measured value must be below this limit. 100% limit (blue line): Average of measured values must be below this limit. The worst measured momentary value is shown in the diagrams.)
Current RMS(Amps)
0,30 0,25 0,20 0,15 0,10 0,05 0,00 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 6
THD Class C: Pmax = 110 W, Vinac = 90 V, Iout = 250 mA, Vout = 420 V, PF = 0.998
Current RMS(Amps)
0,225 0,200 0,175 0,150 0,125 0,100 0,075 0,050 0,025 0,000 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 7
THD Class C: Pmax = 110 W, Vinac = 220 V, Iout = 250 mA, Vaout = 420 V, PF = 0.992
Data Sheet
22
V1.2, 2004-02
TDA4863-2
Application Circuit
Current RMS(Amps)
0,175 0,150 0,125 0,100 0,075 0,050 0,025 0,000 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 8
THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 250 mA, Vaout = 420 V, PF = 0.978
Current RMS(Amps)
0,30 0,25 0,20 0,15 0,10 0,05 0,00 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 9
THD Class C: Pmax = 110 W, Vinac = 90 V, Iout = 140 mA, Vaout = 420 V, PF = 0.999
Data Sheet
23
V1.2, 2004-02
TDA4863-2
Application Circuit
Current RMS(Amps)
0,125 0,100 0,075 0,050 0,025 0,000 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 10
THD Class C: Pmax = 110 W, Vinac = 220 V, Iout = 140 mA, Vaout = 420 V, PF = 0.975
Current RMS(Amps)
0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 4 8 12 16 20 24 Harmonic # 28 32 36 40
Figure 11
THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 140 mA, Vaout = 420 V, PF = 0.883
Data Sheet
24
V1.2, 2004-02
TDA4863-2
Package Outlines
5
Package Outlines
P-DIP-8-4 (Plastic Dual In-line Package)
4.37 MAX.
3.25 MIN.
2.54 0.46 0.1
0.38 MIN.
1.7 MAX.
7.87 0.38
0.25 +0.1 6.35 0.25 1) 8.9 1
0.35 8x
8 5
1 4 1) 9.52 0.25
Index Marking
GPD05583
1)
Does not include plastic or metal protrusion of 0.25 max. per side
Figure 12
Data Sheet
25
V1.2, 2004-02
TDA4863-2
Package Outlines
P-DSO-8-3 (Plastic Dual Small Outline)
0.33 0.08 x 45
1.75 MAX. 0.1 MIN. (1.5)
4 -0.21)
1.27 0.41 +0.1 -0.05 8 5
0.1
C
6 0.2
0.64 0.25
0.2 M A C x8
Index Marking 1
4
5 -0.21)
1)
A
Index Marking (Chamfer) Does not include plastic or metal protrusion of 0.15 max. per side
GPS09032
Figure 13
You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Data Sheet 26
8 MAX.
0.2 +0.05 -0
.01
Dimensions in mm V1.2, 2004-02
In f i n e o n g o e s f or B u s i n e s s E x c el len c e
"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction." Dr. Ulrich Schumacher
www.infineon.com
Published by Infineon Technologies AG


▲Up To Search▲   

 
Price & Availability of TDA4863-2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X